❓Что делать, если в обучающем наборе для методов на основе соседей часть меток отсутствует или указана неполностью
Методы, основанные на ближайших соседях (например, k-NN), предполагают, что каждая обучающая точка имеет метку. Отсутствие меток усложняет обучение и прогнозирование, особенно если таких точек много.
📝Варианты решений
1. Игнорировать объекты без меток Можно обучаться только на размеченных примерах, но при этом теряется часть данных, что особенно критично при малом объёме обучающей выборки.
2. Использовать полубезнадзорные методы (semi-supervised) Например, распространение меток (label propagation): метки итеративно «перетекают» от размеченных точек к близким неразмеченным, если они достаточно похожи.
3. Изучение структуры данных через неразмеченные точки Даже если метки отсутствуют, сами объекты помогают определить геометрию признакового пространства и уточнить, кто кому «сосед».
📝Подводные камни:
📝Полубезнадзорные методы требуют решать, когда доверять сгенерированным меткам — легко получить ложные закономерности. 📝Если метки отсутствуют не случайно (например, только у сложных или редких объектов), это может внести систематическую ошибку. 📝Оценка качества модели затрудняется — стандартные метрики предполагают, что мы знаем истинные метки хотя бы на тесте.
📝Вывод
Если часть меток отсутствует, не всегда стоит их игнорировать. Лучше использовать структуру данных через полубезнадзорные методы и явно учитывать, насколько случайна или предвзята сама пропуск меток.
❓Что делать, если в обучающем наборе для методов на основе соседей часть меток отсутствует или указана неполностью
Методы, основанные на ближайших соседях (например, k-NN), предполагают, что каждая обучающая точка имеет метку. Отсутствие меток усложняет обучение и прогнозирование, особенно если таких точек много.
📝Варианты решений
1. Игнорировать объекты без меток Можно обучаться только на размеченных примерах, но при этом теряется часть данных, что особенно критично при малом объёме обучающей выборки.
2. Использовать полубезнадзорные методы (semi-supervised) Например, распространение меток (label propagation): метки итеративно «перетекают» от размеченных точек к близким неразмеченным, если они достаточно похожи.
3. Изучение структуры данных через неразмеченные точки Даже если метки отсутствуют, сами объекты помогают определить геометрию признакового пространства и уточнить, кто кому «сосед».
📝Подводные камни:
📝Полубезнадзорные методы требуют решать, когда доверять сгенерированным меткам — легко получить ложные закономерности. 📝Если метки отсутствуют не случайно (например, только у сложных или редких объектов), это может внести систематическую ошибку. 📝Оценка качества модели затрудняется — стандартные метрики предполагают, что мы знаем истинные метки хотя бы на тесте.
📝Вывод
Если часть меток отсутствует, не всегда стоит их игнорировать. Лучше использовать структуру данных через полубезнадзорные методы и явно учитывать, насколько случайна или предвзята сама пропуск меток.
The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”
What is Secret Chats of Telegram
Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.
Библиотека собеса по Data Science | вопросы с собеседований from sg